Friday, October 30, 2020

What is an Electrical Engineer?

 

What is an Electrical Engineer?

Electrical engineers study electronics, electromagnetism, and the application of electricity. The products they develop are used in medical technology, game systems, cell phones, robotics, cars, green technologies, and navigation systems, just touching lightly on the list.

Nearly everything that defines modern civilization is linked to electrical engineering. These engineers work in labs, offices, and industries. They develop systems for power generation, transmission, and distribution—have you heard about "the grid?"

In addition to the subjects mentioned above (and still touching only briefly on the scope), this expertise covers power switches (solar, wind, geothermal), design of power systems, and architectural planning. Electrical engineering is behind the development of every electronic thing within your grasp.

Electrical engineers focus on computer systems design, components, and processes. They incorporate research or management using specialized, hands-on knowledge and dealing with public, private, and academic sectors. They are dedicated to continuing education, on-the-job learning, leadership, and applying new techniques to new situations.

The sciences of physics and mathematics are fundamental to this profession, but technical focus accounts for only a fraction of this work. Making proposals to clients, preparing budgets, and calculating project schedules consumes much of these engineers' time. Senior-level engineers often manage a team, so project management skills and strong communication skills are vital.

Read More: certified security professional

Wednesday, October 28, 2020

Main Focus of a Civil Engineer

 

Main Focus of a Civil Engineer

"Civil engineering is the oldest and most diverse branch of engineering. In its broadest sense, the civil engineer adapts the physical features of the earth to the needs of society. According to the University of Florida, approximately one out of four engineers is engaged in civil engineering."

Civil engineers design, construct, maintain, and operate infrastructures, while simultaneously safeguarding public and environmental health and upgrading neglected structures and systems. Civil engineering reaches from the natural environment to the constructed environment, focusing on interactions between the two, with an emphasis on sustainability.

Combining atmospheric and energy sciences, civil-engineers study climate, air pollution, and weather, addressing problems which might be solved through renewable energy systems. They examine the availability of renewable resources (wind, hydropower and solar), and best practices for their combinations. These kinds of research brought about the first data based wind map and examine the effects of alternative fuels on air pollution.

Read More: ccnp certification

Tuesday, October 27, 2020

Chemical Engineering Degree Online

 

Chemical Engineering Degree Online

There are too many lab and field study requirements to make online study suitable for a conventional B.S. in chemical engineering, but it is possible to earn a master of science degree in chemical engineering (MSCHE) online, through some sources. These opportunities are designed for outstanding students who already have engineering degrees. Qualifications and prerequisites are stringent.

Through chemical processes, chemical engineers find new and creative ways of making those things that improve our lives. Their work ranges from developing better skin-care products to finding materials that are more fire-resistant. Chemical engineers can be part of an innovative team at a manufacturing facility or working in cutting-edge research.
As a chemical engineer, you might be a quality control specialist for a corporation that manufactures cleaning products or jet airplanes. You might be discovering less destructive and more sustainable ways to extract and use natural resources. You might be designing or discovering the latest sensation in the eye care industry, better aerosol propellants, more durable paints, and ways to preserve foods and medicines longer. The sky is not the limit; it is just another avenue for what you might discover.

Read More: ccnp certification

Monday, October 26, 2020

What is a Biomedical Engineer?

 

What is a Biomedical Engineer?

A relatively new discipline, biomedical engineering involves research and development that combine medical and biological sciences for the advancement of all healthcare disciplines. It is a growing and evolving career field and according to CNNMoney.com, is the #1 Best Job for 2012 in America.

Some biomedically-engineered phenomena include regenerative tissue growth, pharmaceuticals, high-tech prostheses, diagnostic imaging equipment, and micro-implants. Biomedical engineering includes an increasing subset of specialties. Some of those specialties include:

Tissue Engineering

Organ transplants made from patients' own tissue, offer a quality of life not possible with donor organs. This field has produced solid jawbones and tracheas from human stem cells. Artificial bladders have been developed and successfully transplanted into humans.

Genetic Engineering

Manipulates an organism's genes on a molecular level. Some applications include improved crops, synthetic insulin, and the production of mice more suitable for cancer research.

Neural Engineering

Centers on the repair of neural systems—those pathways that tell our muscles when to move. All paralysis victims have an interest in this science on some level.

Read More: cisco ccnp security

Friday, October 23, 2020

Automotive Engineering Master’s Degree

 

Automotive Engineering Master’s Degree

A master's degree in automotive engineering is not necessary to work in the field, but such a degree will give students specialized automotive engineering knowledge and skills. Moreover, master's degree programs offer research opportunities for students. It takes about two years to complete a master's degree program in automotive engineering.

Studies include:

  • Design and manufacturing
  • Energy and environment
  • Materials
  • Noise and vibration
  • Powertrain
  • Dynamics and control
  • Electronics and computer software
  • Ergonomics

To earn a master's degree, the student must satisfy the university's thesis requirements and/or complete a final project.

Online Degree

The few universities that offer online automotive engineering degrees do so only at the master’s degree level. The student gains only theoretical knowledge from an online master's degree. The student does not receive any hands-on experience, which can be important to landing a job in automotive engineering. The online programs assume that the student received hands-on experience while obtaining the bachelor's degree. Therefore, online master's degree programs in automotive engineering are meant for the working automotive engineer

Read More: ccnp certification

Thursday, October 22, 2020

The main focus of an Audio Engineering Degrees

 

The main focus of an Audio Engineering Degrees

Audio engineering is an intricate blend of science and creativity. It involves technical aspects of equipment set-up and operation, but also requires a creative side to enhance and blend the sounds to produce the desired effects.

Often called sound engineers, these professionals are highly sought after in all areas of the entertainment industry. Musicians depend on audio engineers in the studio and in live performances to polish their sound and to keep it consistent throughout each recording or performance. Audio engineers mix the music and enhance the balance to provide the best final product. In television and movies, audio engineers are responsible for all of the sound effects, music, and sound levels heard in the video productions. Even radio depends on sound engineers to keep their stations operating properly. There are other careers available to audio engineers, but the entertainment industry provides the most opportunity.

For those interested in pursuing a career in the audio engineering field, there are three different levels of degrees available. An Associate in Applied Science will teach the basics of working in the industry. The Bachelor of Science degree goes more in depth in both the music and technical aspects of the business. The Master's degree programs focus on very specific aspects of audio engineering.

Read More: certified protection professional certification

Wednesday, October 21, 2020

Real Life Example of an Applied Engineer

 

Real Life Example of an Applied Engineer

As a project engineer for Applied Engineering, Mike Jamieson daily exhibits the range of skills a practitioner in the field must master to excel. He interfaces with internal and external team members and associates in-person and over e-mail every morning. He then focusses on business activities such as speaking with various suppliers on product inventory, consulting with clients on budget requirements and researching options on the internet. In the afternoon, he often leaves the office to visit clients and ongoing projects. He enjoys the opportunity to get out of the office and into the field to interact live with people. For example, on one project he consulted with one of the managers on an HVAC system for a residential structure, specifically the ductwork and air flow systems. Later in the afternoon, he returns to the office to revisit projects he initially tacked in the morning. He may attend more meetings to deliver presentations on status or negotiate with suppliers to acquire the best pricing for a client project. Demonstrating his commitment to continuous education, Jamieson in the evenings attends functions featuring industry thought leaders who make presentations on recent development in technology and best practices. In the past he attended a dinner featuring a presentation by a professor at Purdue University who presented a talk on refrigeration concepts and developing compressor innovations. Ultimately, each day presents him with a range of challenges and learning experiences that enrich him.

Read More: firewall certification

Monday, October 19, 2020

The Main Focus of Agricultural Engineering

 

The Main Focus of Agricultural Engineering 

Agricultural engineering degrees prepare students to work professionally in the many fields of agriculture. Subsets of the studies belonging to the classification of agriculture offer unlimited opportunities for involvement in this field. Demand for Agricultural Engineers has grown over the last 10 years.

Degrees in agricultural engineering cover all aspects of the industry, from water and waste issues, massive farming of foods and livestock, water farming, farming equipment, and farm economics to genetically designed corn and cows.

Earning a degree gives students textbook knowledge and hands-on vision of their chosen field. Fieldwork and laboratory projects combined with actual practice provide a well-rounded education.

The bachelor of science is the first degree to obtain. While majoring in agricultural engineering, a student can minor is any other field. Often students will minor in a related subject such as economics, to enhance their food engineering major, for example.

Graduate students are eligible to pursue a number of advanced degrees, including the Master of Science, Master of Engineering, Master of Agriculture, Doctor of Philosophy and Doctor of Engineering. These students can major in bioacoustics, biomaterials science, bioprocess engineering, environmental and natural resource engineering, food engineering; food, feed and fiber processing; machine and energy systems; and systems analysis.

Read More: ccnp security

Friday, October 16, 2020

Salary & Job Outlook for Aerospace Engineers


Salary & Job Outlook for Aerospace Engineers

There are a few premier universities like Georgia Institute of Technology and Purdue University that offer online master's degrees in aerospace engineering. The graduate student can study at their convenience, apply classroom lessons at their job and satisfy the same academic standards as if they were on campus.

In 2009, U.S. News and World Report rated Massachusetts Institute of Technology, Georgia Institute of Technology and University of Michigan as the top three U.S. universities that grant doctorates in aerospace engineering.

In 2010, those with a Bachelor's degree earned an average of $97,500 according to the U.S. Bureau of Labor Statistics (BLS). Between 2010 and 2020, the BLS expects a five percent growth in jobs. Because some aerospace engineers work on projects connected to the United States’ national defense, they must pass a background check and qualify for security clearances. These requirements will serve to keep defense jobs in the United States.

There are no specific licenses required for aerospace engineers. Employers hire aerospace engineers based on their academic credentials. Licensing and certification is limited for equipment designed and developed by aerospace engineers. For the most part, these certifications are given by the Federal Aviation Administration or NASA.

Read More: computer network architect degree

Thursday, October 15, 2020

Acoustic Engineering Career

 

Acoustic Engineering Career

Acoustic engineers focus their efforts on the shaping and control of sound. They work to manipulate and capture the vibration of sound by harnessing the best quality for hearing. These engineers work to manage noise control in a variety of industrial, commercial and domestic settings. Acoustic engineers develop noise buffers and sound barriers to optimize hearing as well as refine technology used in recording and live performance such as microphones and amplifiers. Moreover, they often work to develop solutions for transferring sound energy into electricity. Other professionals in the field design interiors by selecting specific construction materials and aesthetic products to customize the sound experience of a given living or work environment. Private enterprises in the fields of construction, architecture, and entertainment are a few of the employers seeking the expertise of these professionals. They often strive to perfect the sound experience in concert halls and recording studios, while others may employ their skills in the healthcare industry with work on equipment like hearing aids.

These types of professionals may be asked to perform a variety of duties based on the industry they choose to employ their skills and knowledge. In the construction industry, engineers may execute sound and environmental evaluations on a building to ensure it meets codes and regulations. They may examine how alterations in the design of a structure may impact sound quality. In an industrial setting, these professionals utilize digital hardware and software to determine means for lessening sound disruptions in a work facility, while inquiring into how vibrations impact factory equipment or transportation structures such as a bridge or automobile. In the entertainment sphere, these professionals often work to optimize sound quality in recording studios and in live performance venues, evaluating how structures, materials and digital equipment and software enhance sound quality. Often, bioengineering firms seek these professionals to address how ultrasound and other forms of technology provide the best treatment options for patients under a medical professional’s care. Firms across the world like Sony, LA Live, the NFL, Bose, and Honda are a few of the huge companies seeking the services of these acoustic experts.

Read More: network architect

Wednesday, October 14, 2020

Real-life Example of a Transport Engineer Career


Based on the experience of several young practitioners in the profession, the field of transport engineering offers a rich professional experience. Scott Sorensen , an engineer from the University of Nebraska, developed an after school education program to teach principles of engineering to high school students, whereby they designed buildings and created electrical applications for Christmas lights. Matthew Arnold, an engineer from Kansas State University, finds the hands on nature of the field most engaging. He thrives performing outdoors, enabling him the experience the vitality absent working in an office. Both Sorensen and Arnold enjoy the state-of-the-art technology they employ on a daily basis such as self-driving vehicles. New challenges encountered have made the field particularly rewarding for Tomas Lindheimer, an engineer from the University of Kansas. He enjoys the broad concepts and intellectual curiosity the industry demands. He believes he’s constantly learning new concepts that compel him to rethink his preconceived notions.

The direct impact the field has on people’s lives serves as the most attractive part of the profession for these young professionals. Instead of sitting in an office, detached from their fellow man, these engineers see the influence their work has on the daily lives of the people they serve. Many professors and industry executives encourage aspiring students and candidates to carefully consider the impact their work has on society as a whole. It is one of a few industries where practitioners see first-hand the results their technical backgrounds have on the ways people experience their daily lives.

Read More: ccp 340

Tuesday, October 13, 2020

Thermal Engineering Degree

 

Thermal Engineering Degree

Professionals in the field of thermal engineering strive to develop more efficient means for transferring energy into more practical means, drawing on their expertise in heat transfer. Within an industrial context, these engineers work on solutions for fuels, exploring forms of chemical, electrical and mechanical energy. These professionals find specialization in the fields of high technology, solar power, oil and gas, power companies, as well as temperature control systems. Transforming power grids to create more affordable electricity has become one of the most popular fields utilizing the expertise of thermal engineers.

If you want to know more about becoming a thermal engineer, contact the schools listed here to learn more. It’s important to talk to as many schools as you can to determine the best way forward.

Thermal engineers dedicate their efforts to refining electronics systems and safety applications. They collaborate extensively with groups of hardware and software experts at all stages of the product cycle from initial design through the manufacturing and installation of products and systems. In this capacity, they may develop models for industrial assets rooted in computer projects for optimizing source materials and functionality.

Read More: professional networking

Monday, October 12, 2020

Real-Life Example of a Structural Engineer

 

Real-Life Example of a Structural Engineer

John Shmerykowsky, an experienced structural engineer, has witnessed first-hand the rewards of the career as well as the technological transformations that are reshaping the industry. As a principal of his own firm, he spearheaded the work completed at the Phillip Morris building in New York City at 120 Park Avenue. He works primarily as a consultant to architects, while he completed his education at Fountainbleu in Paris. Shmerykowsky has developed his reputation by completing projects that feature unique challenges. For example, the Phillip Morris project possessed a structure that was one quarter positioned over-functioning subway tracks that were employed to transport garbage. His team had to develop an approach that would enable them to complete work on the building while enabling the tracks to run without interruption. He also developed sustainable features in the building including windows conducive to harnessing natural light. 

Over time, he has seen how vital digital applications have become to the industry, whereby he encourages all aspiring professionals to become comfortable with the technology as well as current ones to remain vigilant in keeping current on computer-based trends. His firm Shmerykowsky Consulting Engineers currently seeks structural engineers to add to their team to help realize current projects for their portfolio of clients. Like the company’s founder, the firm seeks engineering professionals that possess a diverse range of technical, business, interpersonal and communication skills that are tantamount to executing current and future structures throughout the world.

Read More: network architect jobs

Friday, October 9, 2020

Software Engineering Degrees

Software Engineering Degree

Most people are familiar with older, more traditional engineering fields such as mechanical, civil, or electrical. Software Engineering is a relatively new discipline, but in today’s increasingly interconnected world, it is becoming more and more important.

Software Engineering differs from Computer Science or Web Design in that you are formulating how the overall software system functions, and how it works within its intended hardware environment.

Software Engineers are responsible for every phase of a development project, not just for writing the computer code. Upon the initiation of a project, they make sure requirements are documented and validated.

This assures the entire project is working toward the correct goal. They then move on to system design, often overseeing the creation of software prototypes to present to clients for additional validation.

Once the design is solid, Software Engineers manage the overall development effort to make sure the pieces are coming together as planned. Finally, they create and oversee test cases which assure system functionality is complete and traceable to the requirements generated at the time of project initiation.

Software Engineering is the discipline that makes sure computer systems are developed methodically and result in building the right product with quality built in from the beginning.

Read More: computer network architect

Thursday, October 8, 2020

How Much Does a Petroleum Engineer Earn

 

How Much Does a Petroleum Engineer Earn

  • According to the U.S. Bureau of Labor Statistics (BLS), the average salary of a Petroleum Engineer is $114,080 per year.
  • The 2010 National Association of Colleges and Employers survey showed petroleum engineers as the highest paid 2011 graduates at an average $80,849 annual salary.
  • The Society of Petroleum Engineers' 2010 survey included advanced degrees and found the U.S. median salary at $158,557, with the mean at $199,248.

The largest group is with the Society of Petroleum Engineers (SPE). This organization publishes substantial amounts of information on the industry. Additionally, there is the American Institute of Mining, Metallurgical, and Petroleum Engineers that represents over 150,000 engineers worldwide.

Reservoir engineers optimize production with proper well placement and enhanced recovery techniques. Drilling engineers oversee the technical aspects of drilling exploration, production, and injection wells. Production and subsurface engineers direct connections between reservoirs and wells, overseeing downhole monitoring equipment and flow control, sand control, and perforations.

Read More: network architects job description

Wednesday, October 7, 2020

The Main Focus of a Nuclear Engineering Degree

 

The Main Focus of a Nuclear Engineering Degree

Nuclear engineering is the most integrated of the engineering disciplines. The many components of nuclear systems (medical imaging, nuclear fission reactors, ultrasensitive contraband detectors, and fusion reactors) must all be understood as well as how they relate to one another. Nuclear engineers must be experts in their primary field, as well as knowledgeable in other fields such as electronics, thermodynamics, physics, and materials science. The fundamentals of one science are often the same tools used in solving problems in the other disciplines.

An undergraduate degree in nuclear science and engineering develops the fundamentals of nuclear processes—their production, interactions, and radiation measurements. These studies bring the student all the way to the design phase of nuclear-based systems, stressing social, health, and energy and security impacts.

Studies also incorporate computer methods, thermal-fluid engineering, and electronics—critical tools for a nuclear engineering career.

The Bachelor of Science degree in Nuclear Science and Engineering prepares students for careers in the application and engineering of low-energy nuclear physics. This includes design, analysis, and operation of radiation systems and their applications, such as fission reactors and accelerators, and biomedical uses. Students are also prepared for graduate study in a wide range of engineering and physical sciences.

A five-year program offers an opportunity to earn a Bachelor of Science and a Master of Science in Nuclear Science and Engineering simultaneously.

Read More: computer network architect jobs

Tuesday, October 6, 2020

Mining Engineering Salary and Career Outlook

 

Mining Engineering Salary and Career Outlook

According to the US Bureau of Labor Statistics “employment of mining and geological engineers is projected to grow 12 percent from 2012 to 2022,” which according to their data puts it on par with most other occupations in terms of projected growth. With the average salary for mine and geological engineering professionals being reported at $86,870 annually (or $41.76 hourly) as of 2013, the range between the lowest and highest paid percentages of the industrial professionals was between approximately $49,000 and $140,000 depending upon industrial focus, employer, position and experience.

A recent 2013 BLS study found that in regards to median salary, differences in respect to specific location also existed. In the metropolitan area of Huston Texas, the annual mean average for geological and mining engineers, including health and safety professionals, was $147,880, with the same occupations earning between $118,450 and $121,350 in the Bakersfield and Oakland California markets, respectively. These salaries, when compared to the $84,140 mean of the St. Louis metropolitan market and the $69,970 measured in the Colorado Springs market, show that sometimes drastic disparities exist in respect to salary, dependent upon location and industrial focus.

Read More: what is a network architect

Monday, October 5, 2020

Mechatronics Degree Requirements

 

Mechatronics Degree Requirements

Mechatronic engineers require at least a Bachelor’s degree, whereby most of these professionals have completed undergraduate studies in mechanical engineering. The field, though, transcends this traditional discipline into a variety of fields of study such as electronics, decision-making theories, and information technology, among others. With a Master’s degree in mechatronic engineering, an individual has the credentials to assume management and more advanced research posts. Graduate programs often feature traditional classroom instruction with practical industry experience. Coursework traditionally explores practices in automation theory, methodology, and analysis. An example mechatronic engineering class at the Massachusetts Institute of Technology (MIT), for example, instructs the design of mechatronic systems that integrate mechanical, electrical, and control systems engineering. For those seeking a less rigorous option of entering the field, an associate's degree in mechatronics can be attained at a community college or technical institution. These 2-year degree programs equip candidates with the skills to assume entry-level positions, whereby they troubleshoot maintenance processes. Classroom instruction typically entails course work in robotic design as well as training in engineering drawing.

Students of mechatronics have gone on to develop many of the “smart” devices that have transformed a medley of industries around the world. From robots and anti-lock brakes to photocopiers and computer drives, mechatronics professionals are changing the way people work and live, according to the American Society of Mechanical Engineers (ASME). The technology is also found in humidity-sensitive clothes dryers and windshield wipers as well as in healthcare, agriculture, construction, entertainment, automobiles, and tools for the disabled and elderly communities. These technological innovations reflect the dedication these professionals have to become life-long learners. With a bevy of associations, professional organizations, societies, and resources like the American Society for Engineering Education (ASEE), the Technology Student Association (TSA), and the National Society of Professional Engineers (NSPE), among others, students and seasoned professionals have seamless access to the knowledge and resources necessary to bolster their education and skills as the industry evolves over time. Organizations such as these also provide mentoring and networking opportunities that have the potential to enhance the prowess of an individual seeking transformative career opportunities and guidance as well as for institutions seeking to attract and nurture talent to their efforts. In addition, esteemed institutions such as MIT offer free online course programs for students and professionals through its Open Course Ware initiative.

Read More: network architect job description

Thursday, October 1, 2020

Materials Science and Engineering Career and Salary

 

Materials Science and Engineering Career and Salary 

In general, as a broadly applicable field of study with many avenues open to graduates and post-graduates throughout numerous professional sectors, Material Science and Engineering maintains a respectable average salary in terms of national averages. The US Bureau of Labor Statistics (BLS) reports that in 2012, the mean salary for a Materials Engineer was $85,150 annually. In comparison, Onet.com reported a rise in this for 2013 with a reported mean salary of $87,330 per year, with these totals naturally varying between industries and according to educational and experiential backgrounds. Job growth in this particular sector is reported to be effectively flat between 2012 and 2022, according to the BLS, experiencing neither substantial losses nor gains in term of total net employment.

However within the state of California alone, numerous opportunities can be found consistently in the areas of aerospace and defense, medical device design and manufacturing, applied physics research and development (both commercial and academic,) as well as in general consumer products and electronics manufacturing. Additional opportunities in the energy, automotive and information technology sectors can also be found throughout the country and are themselves possessing of growth potential as each of these industries continues to evolve rapidly in light of technological advances.

Read More: computer network architect job description

What is the Main Focus of Petroleum Engineering?

Petroleum engineering deals with the production of hydrocarbons—the products of crude oil and natural gas. This above-ground field focuses o...